
WGU OSMT

Acceptance Criteria for Patterns
Things common to multiple views

Patterns in a typical list view, for reference

The typical page is a stack of nested patterns:

1. Nav bar
2. Common controls

Nav bar

Common controls

Footer

Paging navigation

Selected items actions

List item

List topmatter

Filter controls

List item

List item

List item

3. Content, in this example a list view consisting of
a. List topmatter (describes the centerpiece of the view)
b. Filter controls (operates on the centerpiece of the view)
c. List items (the centerpiece of the view)
d. Paging navigation (operates on the centerpiece of the view)

4. Selected items actions (operates on the data elements in the centerpiece of the
view)

5. Footer

These patterns and others are described below.

White label
A few white label parameters are available to the organization building an instance of
the OSMT

1. A logo URL
2. A product name
3. A single brand color hex value
4. A default author string
5. Whether or not the author field is editable
6. A creator URL
7. A copyright string
8. A public skill view title string
9. A public collection view title string
10. An IdP logout redirect URL

Design System

White Label

Behavior: Author visibility

The visibility/behavior implied by “whether or not the author field is editable” is covered
in relevant views new/edit skill form, new/edit collection form, skill view, and collection
view. But in general,

1. In forms, the author field is not shown if it is not editable.
2. In non-form single-item views, i.e. single skill and collection, author is visible since

the view hearkens to the public view.

3. Author is always visible on the public view of skill and public view of collection.

Pattern: page <title>s (metadata)

Views

Every page should have a sensible and informative <title> element. This is the content
that typically appears in window headers, browser tabs, bookmarks, and link text on
other sites to help users identify these at a glance.

Elements and behavior

Internal Views

Detail Views Pattern

{RSD or collection name} | {page heading/H1*} | {tool name}

examples:
● Written Communications | Edit Rich Skill Descriptor | OSMT
● Information Technology Management – B.S. Business Administration |

Collection | OSMT

Non-Detail Views Pattern

{page heading/H1*} | {tool name}

examples:
● RSD Library | OSMT
● Batch Import | OSMT
● Search Results | OSMT

*Notes About Headings

A few views do not have the typical page heading/H1. These are listed here with
the text string to use in the <title> of each view.

View Text String to Use in <Title>

view/manage RSD (detail view) Rich Skill Descriptor

view/manage collection (detail view) Collection

confirmation pages and guards Heads Up

error states Error

logged out of OSMT Logged Out

Public Views

RSD View Pattern
{RSD name} | Rich Skill Descriptor | {tool name}

Collection View Pattern

{Collection name} | Collection | {tool name}

examples:
● Written Communications | Rich Skill Descriptor | OSMT
● Information Technology Management – B.S. Business Administration |

Collection | OSMT

Pattern: nav bar

Views

The nav bar appears over all internal (logged in) views and does not appear over the
public skill or public collection views.

Design System

Nav Bar

Elements and behavior

1. The logo from the whitelabel parameters
2. The product name from the whitelabel parameters
3. A hidden “skip to content” link (this can be found as part of the broader Header

pattern)

4. A hidden “skip to search” link (this can be found as part of the broader Header
pattern)

5. A link to the skills library view
6. A link to the collections library view
7. A link to log out

Pattern: public nav bar

Views

The public nav bar appears over public views, namely the public skill and public
collection views.

Design System

Nav Bar - Public

Elements and behavior

8. The logo from the whitelabel parameters
9. A title from the whitelabel parameters
10. A hidden “skip to content” link

Pattern: footer

Views

The footer appears beneath all views, internal (logged in) or otherwise (public).

Design System

Footer

Elements/data

1. The copyright string from the whitelabel parameters
2. A powered by string, currently “Powered by the Open Skills Network” that may

include a link to an external site

Pattern: common controls

Views

The common controls module appears over all internal (logged in) views except

● Batch import process views
● Guards against publishing a collection with draft or archived skills

Design System

Common Controls

● Each action item can be either an anchor or a button depending on engineering
needs. Buttons do something, anchors go somewhere. The class can be
attached to either element

● Common controls appear alongside Nav Bar as part of the Header pattern

Elements and behavior

1. A search field with two actions
a. Search skills, which leads to a skills search results view and is the default

action of the form
b. Search collections, which leads to a collections search results view

2. A link to advanced search
3. A Create Skill button that leads to the new skill form
4. A Create Collection button that leads to the new collection form
5. A Batch Import Skills button that leads to the beginning of the batch import

process
6. Once a user has taken an action from the common controls, and the new page

loads, screen reader focus would go to the new page header.

Pattern: skills list

Views

Included on views
1. Skills library

2. Skills search results from common controls search field
3. Collection
4. Skills search results within collection
5. Skills search results for outside-of-collection skills from a collection view

Does not include views
1. Public view of collection

Design System

● Skills List
● Skills List Empty

Elements/data

Surrounding the list

1. A caption that shows the number of skills returned, of the form “{x} of {y} skills in
{context}” where {context} refers to the skills library or the specific collection in
question, {x} refers to the number of filtered skills returned, and {y} refers to the
unfiltered number of skills in that context.

2. A caption that shows the paginated range of collections displayed on the page
"Viewing skills {m}–{n}” where {m} refers to the skill number displayed at the top
of the page and {n} refers to the skill number displayed at the bottom of the page.

3. Filters that restrict the skills shown, discussed in Module: Filters
4. A checkbox that selects all items on all pages

a. And is labeled with “select all” and the number of items that will be
selected when the checkbox is operated

5. Group actions that operate on the one or more selected skills, appearing after the
list of skills, discussed further in Module: selected items actions

6. Paging navigation

Of the list itself

7. Zero or more skills in a responsive table/card format, explained by Pattern: skill
as a list item

8. An empty state message if no skills – this message differs by view
9. Default sort order is ascending alpha by category
10. 50 skills will be displayed on a single page

11. On narrow viewports, the sortable headers “Category” and “Skill” collapse to a
single header “Skill” that reveals a menu to sort by category or skill name

Pattern: public skills list

Views

Included on Public view of collection

Elements/data

1. Zero or more skills in a responsive table/card format
2. A first column, headed “Category”, containing the category for each skill listed
3. A second column, headed “Rich Skill Descriptor”, containing for each skill listed

a. The skill name, which is also a link to the public view of that skill
b. The skill statement
c. The skill’s archived status, if applicable

4. An empty state message if no skills – this message differs by view
5. Default sort order is ascending alpha by category
6. 50 skills will be displayed on a single page
7. On narrow viewports, the headers “Category” and “Skill” collapse to a single

header “Skill”
8. Stretch: On narrow viewports, the sortable headers “Category” and “Skill”

collapse to a single header “Skill” that reveals a menu to sort by category or skill
name

The only clickable items in this pattern are the skill names.

Pattern: collections list

Views

Included on views

1. Collections library
2. Collections search results from common controls search field

Design System

Collection List

Elements/data

Surrounding the list
3. Filters that restrict the collections shown, discussed in Module: Filters

a. By default, Draft and Published collections are selected, but Archived is
NOT selected.

4. A caption that shows the number of collections returned, of the form “{x} of {y}
collections in {context}” where {context} refers to the collections library, {x} refers
to the number of collections returned, and {y} refers to the number of collections
in that context

5. A caption that shows the paginated range of collections displayed on the page
"Viewing collections {x}–{y}” where {x} refers to the collection number displayed
at the top of the page and {y} refers to the collection number displayed at the
bottom of the page. A group of 50 collections will be displayed on a single page.

6. A “select all” checkbox
a. And is labeled with the number of items that will be selected when the

checkbox is operated
7. Group actions that operate on the one or more selected collections, appearing

after the list of collections, discussed further in Module: selected items actions
8. Table can be sorted by:

a. Collection name A–Z or Z–A.
b. Number of skills low–high or high–low.
c. On mobile, the table sort is collapsed into a single drop down and the table

header becomes “Sort”

Of the list itself

9. Zero or more collections in a responsive table/card format, explained by Module:
collection as a list item

10. An empty state message if no collections – this message differs by view

Pattern: filter controls
Filters govern what skill or collection items are shown in a list of skills or collections.
The filter options are always the same, but which are selected by default varies
somewhat by view.

Design System

Filter Controls

Elements/data

1. The filters available are the same for all lists of skills and collections
a. Draft – when on, show draft (unpublished) items in the list
b. Published – when on, show published items in the list
c. Archived – when on, show archived elements in the list

2. The filter controls are always visible above a list, except for public views
3. Stretch: The filter control labels show how many skills’ visibility is governed by

that filter
4. Which filters are selected by default differs per view and is discussed in the entry

for each relevant view
5. There is a hidden “filter” label before the first filter.

Pattern: skill as a list item

Design System

Skill as a List Item

Elements/data

Each skill in a list of skills contains

1. The skill’s category
2. The skill’s skill name, which is required, and is also a link to the single-skill view of

the skill
3. A hidden link to the next skill
4. The skill’s skill statement, which is required

5. The skill’s keywords, if any, which may be truncated if longer than the width of
the table cell/card

a. If truncated, an indicator will appear to signify that there is hidden
information

6. The skill’s detailed occupations (BLS detailed occupation job codes), if any, which
may be truncated if longer than the width of the table cell/card

a. If truncated, an indicator will appear to signify that there is hidden
information

7. The skill’s draft status, if applicable
8. The skill’s archived status, if applicable
9. A checkbox that selects the skill
10. A hidden “jump to actions” link after each checkbox that brings the user to the

actions in the action bar
11. An overflow action menu per skill – actions differ by view and by statuses of the

skill. Possible actions include
a. Archive skill
b. Unarchive skill
c. Publish skill
d. Add to Collection
e. If need be, these actions can spawn a blocking loader governed by Pattern:

blocking loader
12. An expand/collapse control that shows or hides additional information in the

table row/card and reveals any truncated data
a. The un-truncated keywords, if any
b. A list of the skill’s higher-order BLS job codes, if any
c. The un-truncated BLS detailed occupations, if any
d. A list of the skill’s O*NET job codes, if any
e. A list of the skill’s certifications, if any
f. A list of the skill’s employers, if any
g. The skill’s alignment URL, if any

13. If a non-required field is empty, its label will also not appear in the list item.

Layout

Each skill as list item is responsive to the available width of the viewport; as the
viewport becomes narrower each list item’s layout shifts from a somewhat tabular
arrangement, with some data in columns and some stacked, to a fully stacked
arrangement.

Pattern: collection as a list item

Design System

Collection as a List Item

Elements/data

Each collection in a list of collections contains

1. The collection’s collection name and is also a link to the collection detail view
2. The number of skills within the collection
3. The collection's draft status, if applicable
4. The collection's archived status, if applicable
5. A checkbox that selects the collection
6. A hidden “jump to actions” link after each checkbox that goes to the sticky

selected items actions bar.
7. An overflow action menu per collection – actions differ by view and by statuses

of the collection. Possible actions include
a. Archive collection
b. Unarchive collection
c. Publish collection
d. If need be, these actions can spawn a blocking loader governed by Pattern:

blocking loader

Layout

Each collection as list item is responsive to the available width of the viewport; as the
viewport becomes narrower each list item’s layout shifts from a somewhat tabular
arrangement, with some data in columns and some stacked, to a fully stacked
arrangement.

Behavior

Screen readers will read out the table column headers before each data point. For
example: "Collection Name: Health Education Development, Status: Draft, Skills: 20"

Pattern: selected items actions

Views

Any list view has selectable list items and one or more actions that can be taken on
selected items. These actions differ by view.

Design System

Selected Items Actions

Elements/layout

The actions appear in a sticky bar at the bottom of the view/end of the list of items. In
narrow views, these are stacked. In very narrow views, the actions may also stack.

1. In general, lists of skills offer some of the following actions, depending on view
a. Publish skills
b. Archive skills
c. Unarchive skills
d. Add skills to collection
e. Remove skills from collection

2. In general, lists of collections offer some of the following actions, depending on
view

a. Publish collections
b. Archive collections
c. Unarchive collections

Behavior

1. When no list items are selected, no actions are available. This is shown by
disabling the controls that fire these actions.

2. When an action is initiated, the action temporarily changes to an inert,
indeterminate “processing” state.

a. If the process will take more than 500ms (a proxy measure maybe chosen
for this such as the number of affected records), an indeterminate loading
indicator will appear visibly over the page content and be announced via
aria-live. This is detailed in Pattern: blocking loader

3. When one or more list items are selected, the actions are enabled. It’s possible
that some of the available actions may not seem appropriate, such as publish

skill when only an already-published skill is selected. But publishing again would
have no effect, so it is safe to have such a control enabled.

4. Users can select list items of different states. But since actions change a binary
state, it is safe to select heterogenous items and then apply a single action that
may not necessarily be appropriate for all items; for the “inappropriate” items
there will be no effect. These tables demonstrate:

↓on what action→
 effect ↘

Archive skill Unarchive skill

Skills Archive the skills, not
confirmed, fire success
toast a la “Archived 27
skills.”

No effect, not confirmed,
fire success toast a la “The
27 skills were already not
archived.” Action is
disabled

Archived skills No effect, confirmed, fire
success toast a la “The 27
skills were already
archived.” Action is
disabled

Unarchive the skills, not
confirmed, fire success
toast a la “Un-archived 27
skills.”

Mix of skills and archived
skills

Archive the unarchived
skills, not confirmed, no
effect on the others, fire
success toast explaining
overall effect

Archive the unarchived
skills, not confirmed, no
effect on the others, fire
success toast explaining
overall effect

↓on what action→
 effect ↘

Archive collection Unarchive collection

Collections Archive the collections, not
confirmed, fire success
toast explaining overall
effect

No effect, not confirmed,
fire success toast
explaining overall effect

Archived collections No effect, not confirmed,
fire success toast
explaining overall effect
Action is disabled

Unarchive the collections,
not confirmed, fire success
toast explaining overall
effect

Mix of collections and
archived collections

Archive the unarchived
collections, not confirmed,

Unarchive the archived
collections, not confirmed,

no effect on the others, fire
success toast explaining
overall effect

no effect on the others, fire
success toast explaining
overall effect

↓on what action→
 effect ↘

Publish skills

Draft skills Confirm “are you sure you want to publish”, publish the
skills, fire success toast explaining overall effect

Draft and archived skills Confirm “are you sure you want to publish” while
offering unarchiving of the archived skills, publish the
skills, fire success toast explaining overall effect

Published skills No effect, not confirmed, fire success toast explaining
overall effect Publish action disabled

Published, archived skills No effect, not confirmed, fire success toast explaining
overall effect Publish action disabled

Mix of any of these If any draft skills, confirm; if any draft, archived skills,
confirm while offer unarchiving of those skills; publish;
fire success toast explaining overall effect

↓on what action→
 effect ↘

Publish collection

Draft collections Confirm “are you sure you want to publish”, publish the
collections, fire success toast explaining overall effect

Draft, archived collections Confirm “are you sure you want to publish” while
offering to unarchive the collections, publish the
collections, fire success toast explaining overall effect

Published collections No effect, fire success toast explaining overall effect

Published, archived
collections

No effect, fire success toast explaining overall effect

Mix of any of these If any draft collections, confirm; if any draft, archived
collections, offer to unarchive the collections; publish;
fire success toast explaining overall effect

5. Some of these actions are further guarded – that is to say that we go above and
beyond to confirm the action and offer alternatives. These actions are guarded:

a. Publishing a collection that contains draft skills – the user must publish
the draft skills before proceeding, and is offered the opportunity to do so

b. Publishing a collection that contains archived skills – the user is offered
the opportunity to unarchive the archived skills before proceeding, but is
not required to do so

Pattern: success toast message
Toast messages are non-dismissible success notifications that appear after a user has
taken an action.

Views

See Pattern: selected items actions for some situations when a toast message would
appear.

Design System

Toast module and Toast layout

Behavior

After a user has taken an action and the action was successful, toast messages appear
at the top middle of the viewport for a duration of 5 seconds and then disappear. A
screen reader will read the toast as a passive announcement (aria-live) after page load.
A toast message should be specific to the completed action, for example: “Success! {x}
has been removed from {y}”.

Pattern: error message
Error messages are inline messages that can appear after the user has taken an action
or when the server is experiencing a problem.

Views

Any page can have an error message displayed.

Design System

● Icon Message
● Error Message

Behavior

Error messages appear on the page after the common controls and before the page
title. A screen reader will read the error message in the same order. An error message
should be specific to the problem, if known, for example: “Your skill was not saved.
{Remedy}” or “Oops! Something happened. Please try again.”

Pattern: paging navigation
Internal (logged in) list views (skills, collections) are paged. A page is 50 records.

Views

Paging nav appears on list views whenever the number of returned records exceeds one
page.

Design System

Paging Navigation

Elements

1. A control that takes the user to the prior page of results
2. A control that takes the user to each specific page of results, numbered by page
3. A control that takes the user to the next page of results

Behavior

1. If there is only one page of results, paging navigation will not appear.
2. If a user is on the first page, the prior page control is disabled
3. If a user is on the last page, the next page control is disabled

4. The specific page control for the current page is disabled and visible shown as
clearly active

5. Should there be more than five pages of results, the paging controls are filtered
a. The specific page control for the first page of results is shown
b. The specific page control for the last page of results is shown
c. The specific page control for the current page of results is shown
d. The two specific page controls to either side of the current page, if any
e. Ellipses wherever one or more specific page controls are not shown via

the above rules

Pattern: search-assisted entry
(aka “Search & Multi-Select” in Badgr)

Search-assisted entry helps users find and enter information in forms by returning prior
or expected entries as they type and allowing them to select one or more of these
entries to save with the form. It’s applicable to structured and pre-determined data sets,
such as job codes, as well as user-generated data sets such as keywords.

It is intended to speed data entry by making it easier to choose data that has been used
before or is known to be formatted correctly, to assist with keyboard accessibility, and
to assist with screen reader accessibility.

Views

Search-assisted entry is used on the create and edit skills forms. It’ll initially be used to
help enter job codes, but can be applied to keywords, categories, standards,
certifications, and employers.

Design System

[Add example]

Major elements

1. A text field that serves as the search field
2. A results list that appears after the search field once the user has begun typing in

the search field, containing search result elements if any results are returned
3. Selected items that appear after the search field, representing the data the user

has chosen to save with the form

Behavior

See the demo at https://patternlibrary.badgr.com/examples/search-multi-
select.html#page-ca2229a62f639ccbbddec37085cfd394 for a very similar (but not the
same!) capability.

1. Search field
a. Initially, the search field contains the placeholder text “Search”
b. There is helper text for screen reader users above the field that explains

that if they search here, results will appear as the next item after they exit
the search field.

c. If the field does not accept novel input, it includes a search icon with the
screen reader caption “search”

d. If the user types into the search field, an X control appears that allows the
user to clear the contents of the field

i. The X control is labeled “clear” for screen readers
e. As the user types, results are searched for

i. Each subsequent keypress refines the results.
1. Aria-live will tell the screen reader user the results after the

user stops typing.
ii. While results are being fetched, an indefinite progress indicator is

shown alongside the X control. It is removed once results are
present. This is likely derivative of the spinner component of the
non-blocking loader pattern mentioned below.

f. From here the user may
i. Hit enter to accept their input as a selected item and clear the

search field, after which focus remains on the search field
1. If the input is valid for the field in question, the input is

accepted
2. If the input is not valid for the field in question, a validation

failure message is shown
ii. Tab or use the down key to move focus to the search results.

1. While focus is in the list, additional typing brings focus to the
search field and is reflected there

2. While focus is in the list, the left/right keys move the cursor
in the search field

iii. Tab away from the area entirely, leaving their input in place in the
search field. This input will not be evaluated until the form is
submitted

g. The search field CANNOT accept multiple search terms at once. Anything
entered there is considered a single search term.

2. Results list
a. The results list is a scrolling list of entries found by searching either the

body of allowable entries (as in occupations) or prior entries (as in
employers, standards, keywords, etc.)

b. Typing in the search field causes the results list to be made visible. The
search results are not visible when the search field is empty

c. This results list is made up of one or more of:
i. Empty state copy if the user has begun typing but no results are

found
ii. Active entries (those that are not also members of selected items),

which contain
1. Hidden helper text for screen readers reading “click this

entry to choose”
2. The text of a found item

iii. Inactive entries (those that are already members of selected items)
are greyed out to signal that they are inactive, and contain

1. The text of a found item
2. A caption indicating that the item is already selected

d. The search results can be navigated by mouse or keyboard up/down
e. Clicking an active entry, or hitting enter while it has focus, or selecting it

via screen reader, will cause
i. the entry content to be added to the selected items
ii. the entry to become inactive
iii. an aria-live message pointing out that the selection was added
iv. focus to remain in the search results so the user can select

additional items
f. The search results also has a hidden close control that collapses the

search results, revealing the selected items if any
3. Selected items

a. Zero or more selected items may be present
i. In some cases, a field might be limited to zero or one selected item

b. If one or more selected items is present, they are preceded by a hidden
skip link allowing the user to skip past the selected items

c. Each selected item shows its text and an X control
i. The X control is labeled “remove” for screen readers
ii. Operating the X control removes the item from the list of selected

items

d. There is no empty state text or graphic for this area, as the empty search
field is a sufficient empty state signal

Variants

There are a few conditions that govern this pattern’s acceptance of typed input and
alter the above general behavior.

1. The data type may or may not accept novel input. For example, the occupations
field cannot accept novel input, while the keywords field can

a. If the data type accepts novel input, typed input that has not been seen by
the system before can be accepted as a new selected item and saved for
later searches

b. If the data type does not accept novel input
i. Novel input causes a validation failure
ii. The search results would display “No results found”
iii. The search field contains a search icon, which reads as the word

“search” to a screen reader
2. The data type may or may not accept more than one item. For example, the

employers field can accept multiple strings but the category field accepts only a
single string

a. If the data type accepts only a single input, any selected item replaces the
previous content of the field

b. If the data type accepts multiple inputs, any selected item adds to the
previous contents of the field

Copy

● Hidden helper text before search field: “Enter text in the Search field, then select
from the suggestions that appear in the list that follows. Repeat the process to
add multiple selections. Use the Escape key to close the list and reset your
search terms.”

● Placeholder text in search field: “Search”
● Hidden label for X control to clear search field: “Clear Search field”
● Hidden helper text in active entries: “Click to select”
● Caption indicating that the item is already selected: “Already selected”
● Aria-live message pointing out that the selection was added: “Selection added”
● Hidden label for close control on search results: “Close list”
● Hidden link to skip selected items: “Skip selected items”
● Hidden label for X control on a selected item: “Remove selection”

Pattern: non-blocking loader
A non-blocking loader appears on a page while a process occurs in the background, but
does not prevent other user action. All loaders are indeterminate: They are not tied to a
particular duration, percentage complete, or other measurable increment.

Views

The non-blocking loader is used in “processing” views in batch import, surrounded by
other components of the page.

Design System

Non-Blocking Loader

Elements

A non-blocking loader consists of

1. a seamlessly repeating animated element
2. an optional caption explaining what is happening, detailed in the relevant

acceptance criteria for the view

Behavior

The non-blocking loader appears when the user initiates the associated process and
disappears when that process is complete. For some completed processes, a new page
or new data will display as well.

If there is no caption, an aria-live attribute announces “processing” when the loader
appears and “processing complete” when it disappears.

If there is a caption, aria-live attribute reads the caption when the loader appears and
“processing complete” when it disappears.

Copy

Since the caption is optional, it will be defined on a view or story basis.

Pattern: Loading indicator on “checking
similarity” messages

Elements and Views

A loading spinner, derivative of the non-blocking loader but much smaller, appears
alongside interstitial “checking similarity” captions that appear in batch import and in
skill edit forms.

The same loading spinner may also be used in search-assisted entry above.

Design System

Similarity Checker

Behavior

The loading indicator appears when the system begins checking for similar skill
statements, concurrent with a caption change. It is later replaced when the caption is
changed again to indicate that similarity was ok or not ok.

Copy

Copy is defined on a story basis.

Pattern: blocking loader
A blocking loader prevents further action on a page or explains stale data while a DOM
replacement process occurs. All such loaders are indeterminate.

Views

Any view where the user can take an action on one or more elements, such as archiving
several skills or publishing several collections, will show the blocking loader while the
process completes.

Design System

Blocking Loader

Elements

The blocking loader is essentially

1. A subtler derivative of the non-blocking loader mentioned in Pattern: non-blocking
loader, but

2. appearing on a pale scrim that covers the content to be replaced. It is important
that the scrim be subtle as it may come and go rapidly and we don’t want to
produce a strobe effect. Its purpose is to show that the data is stale and will be
replaced imminently.

It does not have a caption.

Behavior

The non-blocking loader appears when the user initiates an action and disappears when
that process is complete. For some completed processes, a new page or new data will
display as well. The non-blocking loader will cover the old data until the new data is
available.

An aria-live attribute announces “processing” when the loader appears and “processing
complete” when it disappears. This announcement should NOT occur when changing
views, for example from a list of skills to an individual skill.

Ideally the loader will cover rather than replace the DOM elements it is meant to obscure
so that page elements do not jump. Rather, data that will be replaced should seem to
dim until fresh data appears in its stead. If this is not possible, padding values will need
to be carefully chosen to try to hold page areas comfortably open to minimize yoyoing.

Pattern: loader on action button

Views

Multi-unit actions likely to take a bit may benefit from a loading state on the button
itself, close to the user’s gaze. This can be implemented at the developers’ discretion.

Design System

Button Is Loading (A state on Button)

Elements

1. An icon-sized spinner, derivative of that for non-blocking loader mentioned above,
and

2. a dimmed form of the button’s style

Behavior

When a person operates an action button we’d like to suggest that the system heard
them and is taking action, so it seems appropriate to disable the action, give the action
a dimmed appearance, and swap that action’s icon, if any, for an indeterminate loading
indicator.

Neighboring actions (such as Cancel when saving a skill form,or neighboring sticky
action bar actions) should also take on a disabled state.

Once the process completes, if the selected action is not replaced as part of the
triggered process, we’d reverse the appearance changes.

Ideally we would not replace the entire control, but modify or augment its appearance
so that page elements don’t jump around.

